Size and boundary effects on the diffusive behavior of elongated colloidal particles in a strongly confined dense dispersion.
نویسندگان
چکیده
In very recent experimental work, diffusive motion of individual particles in a dense columnar phase of colloidal suspension of filamentous virus particles probed by means of fluorescence video microscopy [S. Naderi, E. Pouget, P. Ballesta, P. van der Schoot, M. P. Lettinga, and E. Grelet, Phys. Rev. Lett. 111, 037801 (2013)]. Rare events were observed in which the minority fluorescently labeled particles engage in sudden, jump-like motion along the director. The jump length distribution turned out to be biased towards a half and a full particle length. We suggest these events may be indicative of two types of particle motion, one in which particles overtake other particles in the same column and the other where a column re-equilibrates after a particle leaves a column either to enter into another column or into a void defect on the lattice. Our Brownian dynamics simulations of a quasi one-dimensional system of semi-flexible particles, subject to a Gaussian confinement potentials mimicking the effects of the self-consistent molecular field in the columnar phase, support this idea. We find that the frequency of overtaking depends on the linear fraction of particles and the steepness of the confining potential. The re-equilibration time of a column after a particle is removed from it is much shorter than the self-diffusion timescale. For the case of large system sizes and periodic boundary conditions, overtaking events do not present themselves as full-length jumps. Only if the boundary conditions are reflecting and the system is sufficiently small, full length jumps are observed in particle trajectories. The reason is that only then the amplitude of the background fluctuations is smaller than a particle length. Increasing the bending flexibility of the particles on the one hand enhances the ability of particles to overtake each other but on the other it enhances fluctuations that wash out full jumps in particle trajectories.
منابع مشابه
Influence of confinement on dynamical heterogeneities in dense colloidal samples.
We study a dense colloidal suspension confined between two quasiparallel glass plates as a model system for a supercooled liquid in confined geometries. We directly observe the three-dimensional Brownian motion of the colloidal particles using laser scanning confocal microscopy. The particles form dense layers along the walls, but crystallization is avoided as we use a mixture of two particle s...
متن کاملLocal influence of boundary conditions on a confined supercooled colloidal liquid
We study confined colloidal suspensions as a model system which approximates the behavior of confined small molecule glassformers. Dense colloidal suspensions become glassier when confined between parallel glass plates. We use confocal microscopy to study the motion of confined colloidal particles. In particular, we examine the influence particles stuck to the glass plates have on nearby free p...
متن کاملDispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model
Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...
متن کاملSolvation Force of Ellipse-Shaped Molecules Moving in One Dimension and Confined between Two Parallel Planar Walls
The model fluids containing hard ellipses (HEs) and Gay-Berne (GB) particles where their center is moving in one dimension and confined between two parallel walls with different interactions are investigated using Monte Carlo simulation, NVT ensemble. The dependency of fluid pressure with respect to the wall distances is studied. The oscillatory behaviors are seen in this quantity against ...
متن کاملSingle-particle motion in colloids: force-induced diffusion
We study the fluctuating motion of a Brownian-sized probe particle as it is dragged by a constant external force through a colloidal dispersion. In this nonlinearmicrorheology problem, collisions between the probe and the background bath particles, in addition to thermal fluctuations of the solvent, drive a long-time diffusive spread of the probe’s trajectory. The influence of the former is det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 139 13 شماره
صفحات -
تاریخ انتشار 2013